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Abstract
In this paper we discuss the problem of finding nontrivial solutions to the Cubic Sieve Congruence problem, that is,
solutions ofx3 ≡ y2z (mod p), wherex, y, z < p

1
2 and x3 6= y2z. The solutions to this problem are useful in

solving the Discrete Log Problem or factorization by index calculus method. Apart from the cryptographic interest,
this problem is motivating by itself from a number theoretic point of view. Though we could not solve the problem
completely, we could identify certain sub classes of primes where the problem can be solved in time polynomial in
log p. Further we could extend the idea of Reyneri’s sieve and identify some cases in it where the problem can even
be solved in constant time. Designers of cryptosystems should avoid all primes contained in our detected cases.
Keywords: Cubic Sieve Congruence, Discrete Log Problem, Prime Numbers.

Resumen
En este artı́culo se discute el problema de cómo encontrar soluciones no triviales al problema de congruencia de
la criba cúbica, esto es, soluciones a la ecuación:x3 ≡ y2z (mod p), dondex, y, z < p

1
2 y x3 6= y2z. Las

soluciones a este problema resultan útiles para resolver el problema del logaritmo discreto o el de factorización
entera cuando se utiliza el método deindex calculus. Además del evidente interés criptográfico, este problema
tiene también relevancia desde el punto de vista de la teorı́a elemental de números. Aunque no logramos resolver
totalmente el problema, sı́ pudimos identificar ciertas subclases de primos donde el problema puede ser resuelto en
tiempo polinomial enlog p. Asimismo, extendimos la idea de cribado de Reyneri e identificamos algunas clases
en donde el problema puede ser resuelto en tiempo constante. Los diseñadores de cripto-esquemas deben evitar
utilizar cualquiera de los primos contenidos en los casos aquı́ detectados.
Palabras Claves:Congruencia de criba cúbica, problema del logaritmo discreto, números primos.

1 Introduction

Index calculus method (Menezes and Oorschot and Vanstone 1997; Coppersmith, Odlyzko and Schroeppel 1986; Das
1999; Das and Madhavan 2005) appears to be applicable in solving the Discrete Log Problem (DLP) (Menezes and
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Oorschot and Vanstone 1997). One variant of this is the cubic sieve method (Coppersmith, Odlyzko and Schroeppel
1986; Lenstra and Lenstra 1990; Das 1999; Das and Madhavan 2005). In the cubic sieve method, one needs a ‘known’
solution (in positive integers) of the Diophantine equation

x3 ≡ y2z mod p,

such thatx3 6= y2z with x, y, z of orderpα for some1
3 ≤ α < 1

2 , wherep is a prime number. We call this the Cubic
Sieve Congruence (CSC) problem andx, y, z will be called a solution of CSC. We refer to (Das 1999, Section 3.2.3)
for the logic behind the suggested range ofα towards the solution of discrete log problem.

Though the problem was first presented back in mid eighties (Coppersmith, Odlyzko and Schroeppel 1986), to the
best of our knowledge the next serious attempt to the problem was made in (Das 1999, Chapter 5) where heuristic
estimates about the density of the solutions were studied in great details. We briefly present the results of (Das 1999,
Chapter 5) in Section 2 with some more experimental evidence to support the conjectured claims of (Das 1999).
However, no effort has yet been made to design a nontrivial algorithm for this problem and we attempt some solutions
in Sections 3, 4. It has been stated in (Coppersmith, Odlyzko and Schroeppel 1986) that “We don’t see any easy way
to find such a triple in general” and in (Das 1999) that “in spite of all these theoretical and experimental exercises, the
question of existence or otherwise a solution of the CSC for some1

3 ≤ α < 1
2 continues to remain unanswered”.

It is well known that the “Number Field Sieve” (see (Lenstra and Lenstra 1993; Pomerance 1996)) is faster than the
cubic sieve among index calculus type methods used in solving DLP. LetLp[v, c] = exp((c+o(1))(log p)v(log log p)1−v).
It is worth mentioning that once a solution of the cubic sieve is known, the running time of the cubic sieve discrete
logarithm and factorization algorithm inGF (p) isLp[

3
√

2/3, 1/2] = exp((0.816 . . .+o(1))(log p log log p)1/2) (Cop-
persmith, Odlyzko and Schroeppel 1986). This could be potentially better than the Number Field Sieve, which has a
running time ofLp[1.923 . . . , 1/3]. Thus it is important to answer where exactly the contribution of this work stands
from a cryptographic point of view. We find polynomial and constant time algorithms (input sizelog p, whenp is the
prime) to solve the CSC problem for different subclasses of primes. Though these subclasses are very small compared
to the complete set of primes, the primes in these subclasses should not be chosen for any secure cryptosystem which
is based on hardness of DLP as easy solution of CSC presents a potential weakness.

Further, this problem is interesting in itself from a number theoretic point of view. An easy attempt to solve CSC
is to choosex, y < p

1
2 at random and then check whetherz < p

1
2 too. As it will be clearer later in this paper, this

random attempt is not going to succeed at all. Thus one needs to consider carefully designed methods to attack this
problem.

We study this problem in parametric formx = v2z %p andy = v3z %p. By a %b we mean the remainder when
the integera is divided by the integerb (the operator%p is always applied to the preceding expression, sov2z %p
means(v2z)%p). In Section 3, we show that it is possible to find a solution in time polynomial inlog p (we denote
this byP(log p)) if there exists a suitablev > p0.25 having a valuep0.25 + O(P(log p)). We show that this happens

for approximately N
1
4

log N many primesp ≤ N . In Section 4 we extend the idea of Reyneri’s sieve and present precise

solutions for CSC when the primep satisfiesn3 < lp < M < lp + pǫ, whereM = n2(n + i), i = 1, 2, 3 or (n + 1)3,

0 < l < p0.5−3ǫ − pǫ−1 and0 ≤ ǫ < 1
6 . This idea works for approximately

∑N
1
3

j=2
4
3

j
1
2

log j many primesp ≤ N . The
ideas used in this paper seem to be extendable for larger subclasses of primes and we are currently working in that
direction.

2 Existing Results

We begin by introducing some notations as in (Das 1999). Fix a prime numberp. Let

• S = {(x, y, z) | x3 ≡ y2z mod p, 1 ≤ x, y, z < p}

• S= = {(x, y, z) | (x, y, z) ∈ S andx3 = y2z}



• S 6= = {(x, y, z) | (x, y, z) ∈ S andx3 6= y2z}

• Sα = {(x, y, z) ∈ S 6= | 1 ≤ x, y, z < pα}

Throughout this paper, we use the Vinogradov symbols≫,≪ and the Landau symbolsO, Θ ando with their usual
meanings (see also (Das 1999; Coppersmith, Odlyzko and Schroeppel 1986; Menezes and Oorschot and Vanstone
1997) for details). We recall thatA ≪ B, B ≫ A andA = O(B) are all equivalent and mean that|A| < c|B| holds
with some constantc, while A = Θ(B) means that bothA ≪ B andB ≪ A hold. For a positive real numberx we
write log x for the maximum between1 and the natural logarithm ofx. We let⌊x⌋ be the largest integer≤ x, and let
{x} = x − ⌊x⌋ be the fractional part ofx > 0.

It is clear that the CSC problem (see also (Das 1999, Chapter 5)), ignoring the bounds onx, y, z, has exactly
(p− 1)2 number of solutions, since one can choose anyx, y from [1, p− 1] and immediatelyz will be obtained. Thus,
#S = (p − 1)2 = Θ(p2). Further it has been presented in (Das 1999, Chapter 5)) that#S= ≤ 3

2 (p − 1) ln(p − 1) +

(3γ − 3
2 )(p − 1) + O(

√
p) = O(p ln p), and#S= ≥ 3

2p + O(p
2
3 ), that is,#S= = Ω(p).

Hereγ is the Euler’s constant defined asγ = limn→∞(1 + 1
2 + . . . + 1

n − ln(n)) = 0.57721566 . . .. SinceS
is the disjoint union ofS= andS 6=, from above one gets,#S 6= ≥ (p − 1)2 − 3

2 (p − 1) ln(p − 1) + O(p), and so,

#S 6= ≤ (p − 1)2 − 3
2p + O(p

2
3 ). In particular,#S 6= = Θ(p2).

We are more interested in the value of#Sα, which is estimated by the following conjecture in (Das 1999, Chapter
5).

Conjecture 1 The expected cardinality ofSα is asymptotically equal toχp3α−1 for all 0 ≤ α ≤ 1 and for some
constantχ ≈ 1.

Table 1.Primes4268002919 (left) and4213586771 (middle) and average values over 50 primes of 30-bit length (right)

α # sol 2
3p3α−1 p3α−1

0.34 0 0 1
0.35 0 2 3
0.36 2 3 5
0.37 6 7 11
0.38 16 14 22
0.39 27 28 43
0.40 69 56 84
0.41 154 109 164
0.42 283 212 319
0.43 573 413 620
0.44 1135 804 1206
0.45 2223 1564 2347
0.46 4407 3043 4565
0.47 8639 5919 8879
0.48 16910 11513 17270
0.49 33179 22392 33589
0.50 65137 43552 65329

α # sol 2
3p3α−1 p3α−1

0.34 0 0 1
0.35 2 2 3
0.36 4 3 5
0.37 5 7 11
0.38 13 14 22
0.39 27 28 43
0.40 54 56 84
0.41 126 108 163
0.42 257 211 317
0.43 547 412 618
0.44 1080 800 1201
0.45 2150 1557 2336
0.46 4235 3028 4543
0.47 8300 5888 8832
0.48 16427 11448 17172
0.49 32244 22258 33387
0.50 63262 43274 64911

α Mean Std.Dev
0.34 0.2800000 0.6074369
0.35 0.4400000 0.5115004
0.36 0.5340000 0.4082616
0.37 0.6622222 0.4120630
0.38 0.7054902 0.3139408
0.39 0.7988400 0.2547877
0.40 0.8296789 0.1910907
0.41 0.8618105 0.1410821
0.42 0.8903438 0.1060304
0.43 0.9261365 0.0804415
0.44 0.9389463 0.0643277
0.45 0.9533673 0.0441644
0.46 0.9686826 0.0338940
0.47 0.9745897 0.0261893
0.48 0.9799228 0.0207219
0.49 0.9840180 0.0138331
0.50 0.9883767 0.0111183

The conjecture is certainly believable, since ifx, y are selected at random, then the probability thatz = x3/z2 ≤
pα is expected to bepα/p and so the size ofSα is aboutp3α−1. We also make a good number of experimental
verifications with various sizes of primes ranging from 15 bits to 32 bits to support the above conjecture. In (Das



1999, Chapter 5), experimental results have been tabulated for the primes32263723 (25 bits) and1034302223 (30
bits). We tabulate in Table 1 experimental results for two32-bit primes. In this first column we give the values ofα.
Second column contains the number of solutions withx, y, z < pα. Third column contains the value of⌊ 2

3p3α−1⌋
and fourth column contains the value of⌊p3α−1⌋. These results indicate that asα increases, the number of solutions
get closer top3α−1 and also for sufficiently largeα depending on the size of prime (in case of 32-bit primes thisα is
0.41),⌊ 2

3p3α−1⌋ gives a lower bound to the number of solutions.

To continue our verification, we calculateNumber of solutions<pα

p3α−1 for α ranging from0.34 to 0.50 for fifty
randomly chosen primes of 30 bits. Then in Table 1 (rightmost) we have tabulated information asα in first column,
the mean of fifty fractions for thatα in second column. In the last column the standard deviation of the same values is
given. Results here indicate that asα is increasing to0.50, the mean is getting closer to1.0 and standard deviation is
getting closer to0.0. This justifies Conjecture 1 further.

In (Coppersmith, Odlyzko and Schroeppel 1986, Page 13) it was noted that Reyneri’s sieve applied top = x3 − z,
with z small generates an easy solution havingy = 1. So the idea is to takex = ⌈ 3

√
p⌉, that is, the minimumx such

thatx3 > p. If x3 − p < p0.5, then putz = x3 − p andy = 1. This gives a solution withx, y, z < p0.5. However,
getting such a solution is not possible in general. It may very well happen that the firstx for which x3 > p is such
thatx3 − p ≥ p0.5. As example, takep = 125000003. In that case, the firstx such thatx3 > p is x = 501. So
x3 −p = 125751501−125000003 = 751498 > p

2
3 and we can not get a solution according to our need, as fory = 1,

z = x3 − p ≥ p0.5. However, we note that there are many solutions with the constraintx, y, z < p0.5 for this prime
and one such example isx = 56, y = 605, z = 1025.

A simple algorithm to find a solution for any prime is as follows.

Algorithm 1

1. for x = 1 to pa, x = x + 1 {
2. for y = 1 to pb, y = y + 1 {
3. calculate0 < y1 < p, such thatyy1 ≡ 1 mod p;
4. calculatez = x3y2

1 %p;
5. if z < p0.5 output solution(x, y, z);
6. }
7. }

Note that, by the previous analysis, it is clear that if we takea = b = 0.35, then it is expected to get a solution with
x, y, z < p0.35 for any large primep. Further, step 3 of Algorithm 1 needsO(log p) time. Thus, the overall complexity
becomesO(p0.7 log p). On the other hand, we have also experimentally observed that it is possible to get a solution
with y < p0.5 whenx is very small compared to the large primep. Considering this assumption and then letting
a = ǫ, a very small quantity andb = 0.5, it is expected to get a solution wherex, y, z < p0.5 with time complexity
O(p0.5+ǫ log p). However, given a very largep, this algorithm is not a practical one.

3 Parametric form for CSC

To have a better understanding of the problem, we express it in parametric form. We rewrite the congruence in the
form

(

y
x

)2 ≡ x
z (mod p). That suggests the parametrization

x = v2z %p andy = v3z %p (1)

Note that in this parametric form the setsS, S 6=, Sα (as defined in the previous section) can be rewritten as

• S = {(x, y, z) |x = v2z %p, y = v3z %p, 1 ≤ x, y, z, v < p},



• S 6= = {(x, y, z) |x = v2z %p, y = v3z %p, 1 ≤ x, y, z, v < p, x3 6= y2z},

• Sα = {(x, y, z) |x = v2z %p, y = v3z %p, 1 ≤ x, y, z < pα, 1 ≤ v < p, x3 6= y2z}.

However, the conditionx3 6= y2z in CSC needs to be tackled carefully in this parametric form. First we present a
technical result.

Proposition 1 If (x, y, z) ∈ S0.5 satisfy (1), thenv > p0.25.

Proof : Let v ≤ p0.25. Thenx = v2z %p = v2z sincev2z < p2(0.25)+0.5 = p asz < p.05. Also y = vx%p = vx,
sincex < p0.5 andv ≤ p0.25. Thusx3 = y2z which violates the requirementx3 6= y2z.

In the rest of the paper, we consider the specific constraintp0.25 < v < p0.5. Further we need solutions of the
form x, y, z < p0.5. Under these constraints,x3 6= y2z in CSC is equivalent tox 6= v2z (see Proposition 2 below).
This serves our purpose, since as presented in Proposition 1, we havev > p0.25 for any solution withx, y, z < p0.5

and further we concentrate on the cases whenv < p0.5 too.

Proposition 2 Letp0.25 < v < p0.5, 1 ≤ x, y, z < p0.5. Then the conditionx3 6= y2z is equivalent tox 6= v2z.

Proof : Supposex, y, z is a solution for CSC such thatv < p0.5 andx3 6= y2z. Since,x, v < p0.5, soy = vx < p.

Assume thatx = v2z = y2

x2 z. This implies thatx3 = y2z which is a contradiction tox3 6= y2z. Thus we getx 6= v2z.
Conversely, letx, y, z, v be a solution to the systemx ≡ v2z mod p, y ≡ vx mod p, x 6= v2z, with p0.25 <

v < p0.5, 1 ≤ x, y, z < p0.5. Theny = vx andx = v2z + lp, with l 6= 0. So,x = y2

x2 z + lp, which implies
x3 = y2z + (lx2)p, that is,x3 ≡ y2z mod p, butx3 6= y2z.

Thus, to find a solution for the CSC problem it suffices to find a solution to

x ≡ v2z mod p,y ≡ vx mod p, wherep0.25 < v < p0.5, x 6= v2z, 1 ≤ x, y, z < p
1
2 . (2)

It is clear that the set of these solutions is a subset ofS0.5. Further it should be noted that for these solutions,y is an
exact integral multiple ofx.

Definition 1 We call a solutionx, y, z of CSC as given in equation(2) a valid solution.

Henceforth, we writev = pδ andz = pβ for δ, β real.
Conjecture 1 claims that there are approximatelyχp3α−1 many solutions(χ ≈ 1) wherex, y, z < pα. Forα = 0.5,

the number of solutions is approximatelyp0.5. We randomly took 25 primes of length 30-bit and checked that for these
solutions, when turned to parametric domain, the cases whenv < p0.5 is extremely low. The number of solutions for
30-bit primes is approximately215. However, in Table 2 we observe that the number of solutions havingv < p0.5 is
extremely low compared to215. In the most favorable result, we get 19 solutions only for the prime759828683. Also
it should be noted that there are cases when there is no solution withv < p0.5 as happened for the prime741799451
(note thatx3 + p has the required form, forx = 731, 929, 3034, 6039, however,y/x is not an integer).Thus there are
very few solutions, which, in the parametric form, givex, y, z, v < p0.5. Still we attempt to find those solutions here as
the range in which we need to varyv is much smaller thanO(p) and show that the analysis produces favorable results
in certain cases.

Lemma 1 For any valid solution of CSC, ifv = pδ < p0.5 thenx < p0.5−δ < p0.25.

Proof : Sinceδ < 0.5 and for a valid solutionx < p0.5, the congruencey ≡ vx mod p is an equality, that is,y = vx.
From this we havevx < p0.5, thereforex < p0.5

v = p0.5−δ. From Proposition 1,δ > 0.25, hence the result.



Table 2.Number of solutions withx, y, z < p0.5 andv < pδ

δ 0 ≤ δ < .3 .3 ≤ δ < .35 .35 ≤ δ < .4 .4 ≤ δ < .45 .45 ≤ δ < .5
Primes
895917131 2 0 0 0 0
593554447 0 0 0 1 1
551556059 0 0 2 0 0
774712823 0 0 1 1 0
961344259 0 1 2 1 0
1052502491 1 1 0 0 0
877166131 0 1 0 1 0
669150091 1 0 0 2 2
721235807 0 0 0 1 0
997165739 1 0 0 0 0
777782111 0 0 3 2 1
601873567 0 2 0 7 6
976974643 0 1 1 0 0
561998999 6 2 1 0 0
784308199 0 0 0 0 1
604718867 1 1 0 0 0
920692687 0 0 2 1 1
678600491 1 0 0 1 0
1066913867 0 1 0 1 0
741799451 0 0 0 0 0
1014893507 3 0 4 1 0
678813823 3 1 2 0 0
759828683 0 0 14 4 1
548375899 0 1 3 0 0
917289047 0 2 6 1 2

Lemma 2 For a fixedv = pδ < p0.5, that is part of a valid solution, we havez > p1−2δ.

Proof : From the fact thatp0.25 < v < p0.5, we havep0.5 < v2 < p. Now, if we assume thatz ≤ p1−2δ, then without
taking modular operationsp0.5 < v2z = p2δz ≤ p2δp1−2δ = p. Thereforex = v2z can not be less thanp0.5. This
proves thatz > p1−2δ.

Putting together Proposition 1, Lemma 1, 2, we obtain the following result.

Theorem 1 Let there be a valid solution (recall thatx, y, z < p0.5, in that case) withp0.25 < v = pδ < p0.5. Then
x < p0.5−δ ≤ p0.25 andz ≥ p1−2δ.

In light of the above discussion, let us present the following result which will be used for the algorithms we discuss
next.

Proposition 3 For somev, z such thatp0.25 < v = pδ < p0.5 andp1−2δ < z < p0.5, if there exists anx < p0.5−δ,
theny < p0.5, that is, we have a valid solution.

As we have already mentioned, an important question at this point is: “is it guaranteed that for any primep there
will be a solution of the formx, y, z, v < p0.5?” The answer is no, though for almost all the primes we have considered,
it is possible to get such a solution. We have some experimental results for25 primes in Table 2 where there is only
one prime741799451 for which there is no solution of the formx, y, z, v < p0.5.



In this section we assume that the considered primes will have solutions of the formx, y, z, v < p0.5 and present
an algorithm based on that. The observation from Theorem 1 presents the basis of the algorithm we propose now.
Here for each fixedv = pδ in the rangep0.25 to p0.5, we varyz in the rangep1−2δ = p

v2 to p0.5 and computex for
each pair(v, z). Once the suitablex is found, withx < p0.5−δ, we output the solution.

Algorithm 2

1. for v = p0.25 to p0.5, v = v + 1 {
2. for z = p

v2 to p0.5, z = z + 1 {
3. calculatex = v2z %p;

4. if x < p0.5

v output the solution(x, y = vx, z);
5. }
6. }
7. Output no solution withx, y, z, v < p0.5;

If there is no solutionx, y, z, v < p0.5, our Algorithm 2 fails. However, that is not the case in general. Note that
in the worst case, the time complexity of Algorithm 2 isO(p), which is worse than the trivial Algorithm 1. However,
it should be noted that Algorithm 2 is extremely efficient when there is a solution wherev is close top0.25. Before
proceeding further, let us present some nontrivial improvement over Algorithm 2.

From Theorem 1, we can see that for fixedv, smallestz that can be considered is⌈p1−2δ⌉. We represent this asz1

and also writez1 = pβ1 for some realβ1 < 0.5. For thisz1, we have

v2z1 = p2δ+β1 = p + k1, (3)

for some0 ≤ k1 < p. Now we have two possible cases:
Case 1: k1 < p0.5−δ. In this case our problem is solved by lettingx = k1. Because, from our earlier analysis we
know that ifv, z < p0.5 andx < p0.5−δ, then we can have a solution just by takingy = vx.
Case 2: k1 ≥ p0.5−δ. In this case we may try for the ‘next suitable’z in increasing order. Let that bez2 = pβ2 of the
form z2 = z1 + t1. Also, we needz2 to be such that

v2z2 = p2δ+β2 = 2p + k2, andv2(z2 − 1) < 2p, (4)

for some0 ≤ k2 < p. This is because, if we take any otherz′2, such thatz1 < z′2 < z2, thenp + k1 < v2z′2 =
p + k′

2 < 2p and hencek1 < k′
2 < p. Thus if x = k1 is not a valid solution,x = k′

2 can not be a valid solution, as
well. So we consider,v2z2 = 2p + k2 which givesv2(z1 + t1) = 2p + k2. This gives usv2t1 = 2p + k2 − v2z1 =

2p + k2 − (p + k1) = (p − k1) + k2, and so,t1 = (p−k1)+k2

v2 . Since our aim is to minimizek2, we can take

t1 = ⌈ (p−k1)
v2 ⌉. Again, as above, we have two cases.

Case 2a: k2 < p0.5−δ, which leads to a solution.
Case 2b: k2 ≥ p0.5−δ, we can continue to the nextz, sayz3 = z2 + t2 wheret2 = ⌈ (p−k2)

v2 ⌉.
We can repeat this process until it terminates by giving us a ‘valid’ solution or it reaches a stage wherezr ≥ p0.5

in somerth cycle. Then we can restart withv = v + 1 till v < p0.5. Based on this we present the following algorithm.



Algorithm 3

I Min = ⌈p0.25⌉;
II Max = ⌊p0.5⌋;
III Start with v = Min;
IV while(v ≤ Max){
IVa z = ⌈ p

v2 ⌉;
IVb k = v2z %p;
IVc if (k < ⌊Max

v ⌋)
Output solution as(x = k, y = kv, z, v) and terminate;

IVd t = ⌈p−k
v2 ⌉;

IVe z = z + t;
IVf While (z ≤ Max) {

k = v2z %p;
if (k < ⌊Max

v ⌋)
Output solution as(x = k, y = kv, z, v) and terminate;

t = ⌈p−k
v2 ⌉;

z = z + t;
}

IVg v = v + 1;
}

V Output no solution withx, y, z, v ≤ ⌊p0.5⌋;

In Algorithm 3 we increasez by a step oft instead of1, as was done in Algorithm 2. This gives the improvement.
However, asv becomes larger the worst case complexity of Algorithm 3 becomesO(p), which is again theoretically
worse than the trivial method described in Algorithm 1. On the other hand, it is important to note that Algorithm 3 is
much more efficient than Algorithm 1 when there is a solution wherev is close top0.25. We shall now use Algorithm 3
for a few arbitrary primes, which are hard to solve using Algorithm 1. Note that the last but one row in Table 3 contains
a 77-bit prime and the last row contains a98-bit prime. We run Algorithm 3 implemented using C programming
language and GMP (GNU Multi Precision) facility. The operating system is Redhat Linux8.0 and the machine
contains Pentium IV processor with 1 GByte RAM. It took approximately20 minutes to have a solution for the77-bit
prime and5 minutes for the98-bit one. If one uses Algorithm 1, it seems very hard to find solutions in these cases
with present day machines. As in Table 2, all the primes presented in Table 3 are selected at random. We have chosen
five 77-bit primes and obtained a solution every time within half an hour. For98-bit, we have taken two randomly
chosen primes, out of which one is in Table 3, the other one has not given any solution in 3 hours.

Table 3.Experimental Results running Algorithm 3
p p0.25 p0.5 v x y z

145678132176163 3475 12069719 27009 17 459153 9785284
145678132176162513743 109863 12069719639 115472 18609 2148818448 10925491628

23456543676548754325781 391351 153155292682 1440247 48034 69180824398 147005442243
66666555558888899999267 508133 258198674587 11225651 16104 180777883704 117974951645

165449093126897423470644536537 20168152 406754340022202 52165306 5171691 269782843552446 303998105265466

Theorem 2 Assume that for a primep, there exists a valid solution (recall Definition1 and equation(2)) with v =
Θ(p0.25+ǫ). Then Algorithm3 requiresΘ(p0.25+3ǫ) time complexity.

Proof : We assumep−k is Θ(p). If v is Θ(p0.25+ǫ), thent is Θ( p
p0.50+2ǫ ), that is,Θ(p0.50−2ǫ). Soz takesΘ( p0.50

p0.50−2ǫ ),

which is,Θ(p2ǫ) steps for eachv. Hence the total time complexity isΘ(p0.25+3ǫ).



From Table 2, we see that there are solutions forδ < 0.3 for 9 primes out of 25 and the time complexity isO(p0.4)
in these cases. It should also be noted that this method is extremely effective whenv is Θ(p0.25).

Now let us see under what conditions Algorithm 3 works in timeO(P(log p)), that is, in time polynomial inlog p.
This directly follows from the proof of Theorem 2.

Corollary 1 Assume that for a given primep, there is a solutionx, y, z < p0.5 (as in (2)) with v = p0.25 +
O(P(log p)). Then Algorithm3 runs inO(P(log p)) time.

Proof : If v = p0.25 + O(P(log p)), thent is Θ( p
(p0.25+O(P(log p)))2

). Now z takesΘ(p0.5

t ) steps, and considering
P(log p)

p0.25 is negligible, one can assume thatz takes constant number of steps for eachv. This gives the proof.
Algorithm 3 uses a suitable gap inz for a fixedv. In a similar way one can try to work with a suitable gap inv

for a fixedz. However, we believe a much better improvement could be achieved by finding a ‘better’(v1, z1) pair for
given(v0, z0) pair. Here by ‘better’ we aim at havingk1 < k0 < p, wherev2

1z1 = l1p + k1 andv2
0z0 = l0p + k0. A

strategy in this direction may improve Algorithm 3 further.
Now one important question is what proportion of primes will have a solution as mentioned in Corollary 1. This

is not clear at this point and needs further investigation.
It should be noted that the primes in Table 3 are selected at random. However, it is possible to identify very large

primes for which Algorithm 3 will give a solution very fast. We first decide on a bound forp, sayN , and then select
anyv of O(N0.25). Now choose a primep which lies between(v − 1)2v2 − v + 1 < p < (v − 1)2v2. Thusv is
Θ(p0.25). Takez = (v − 1)2 and note thatz < p0.5. It is easy to see thatx, y < p0.5.

As an example we present an 160 digit primep = 176137087374777815393637069
274127644687309130845043890914502471120716308007100351639864691570824
4598438342410668233754646248246087265981544014990191518124512839. Note that

⌈p0.25⌉ = 6478324567890123456743789213645386564273,
⌊p0.5⌋ = 4196868920692875480476482274310255119840085255344263015037

8557202428461773454255,v = 6478324567890123456743789213645386564273,
x = 697,y = 4515392223819416049350421081910834435298281, and
z = 4196868920692875480476 4822743102551198394374228874740026921813413
214816386889984.

Proposition 4 Consider a primep such that(v − 1)2v2 − v + 1 < p < (v − 1)2v2. Then we get a valid solution of
(2) for z = (v − 1)2.

Proof : Since(v − 1)4 < (v − 1)2v2 − v + 1 < p, we getz = (v − 1)2 < p0.5. Now x = v2z %p = v2(v − 1)2 %p.
This gives,x ≤ v − 2 < p0.25. Hence,y = vx = v(v − 2) < (v − 1)2 < p0.5.

The Prime Number Theorem (see reference (Menezes and Oorschot and Vanstone 1997)) states that there are

approximately N
log N many primes less than or equal toN . Proposition 4 implies that, for approximately(v−1)2v2

log((v−1)2v2)−
(v−1)2v2−v+1

log((v−1)2v2−v+1) ≈ v
log v4 ≈ N

1
4

log N many primes less thanN , one can get a fast solution to CSC using Algorithm 3.
Thus we have the following result from the above discussion and Corollary 1.

Corollary 2 There are approximatelyN
1
4

log N many primesp ≤ N for which we get a valid solution of CSC in
O(P(log p)) time using Algorithm3.

4 Further extension with respect to Reyneri’s sieve

We have already discussed an application of Reyneri’s sieve to CSC in Section 2. Here we use an extension of that
idea to get fast solutions of CSC for certain kind of primes.



Letp be a given prime then taken = ⌊p 1
3 ⌋. So, we haven3 < p < (n+1)3. Now letk = (n+1)3−p. If k < p0.5

n+1 ,
by letting v = n + 1 andz = n + 1, we have the required solution as seen earlier. One can also consider the cases
whenn3 < p < n2(n+ i) for i = 1, 2, 3. Consider that some particulara2b satisfiesa2b > p andk = a2b−p < p0.5

a .
Then we have a solution by takingv = a andz = b. Now we look into this idea more carefully.

Theorem 3 Given a primep, assume that there existsl andi such that forn = ⌊ 3
√

lp⌋ we have

(i) n3 < lp < (n + 1)3 < lp + pǫ, or

(ii) n3 < lp < n2(n + i) < lp + pǫ, wherei = 1, 2, or 3 andi ≤ p0.5 − p0.5−ǫ,

where0 < l < p0.5−3ǫ − pǫ−1. Then there is a valid solution of(2) with

(i) v = z = n + 1,

(ii) v = n, z = n + i,

respectively. Furtherl > 0 implies0 < ǫ < 1
6 .

Proof : First we prove(i). Takev = z = n+1. Thenlp < v2z = (n+1)3 < lp+pǫ. Thus,x ≡ v2z mod p, x < pǫ.
Now y = vx < (n + 1)pǫ < ( 3

√
lp + pǫ)pǫ < ( 3

√

(p0.5−3ǫ)p + pǫ)pǫ = ( 3
√

p1.5−3ǫ − pǫ + pǫ)pǫ = p0.5−ǫpǫ = p0.5.
Similarly, z = n + 1 < p0.5−ǫ.

Now we prove(ii). In this case,n3 < lp < n2(n + i) < lp + pǫ, i = 1, 2, 3. Takev = n, z = n + i. Then we
obtainv2z = n2z = n2(n+ i) < lp+ pǫ. Since,x ≡ v2z mod p, x < pǫ. Furthery = vx < npǫ < (lp+ pǫ)1/3pǫ ≤
((p0.5−3ǫ − pǫ−1)p + pǫ)1/3pǫ = (p1.5−3ǫ − pǫ + pǫ)1/3pǫ = (p1.5−3ǫ)1/3pǫ = p0.5−ǫpǫ = p0.5. Lastly, we have
to show thatz < p0.5 given thatz = n + i. Sincen3 < lp, we haven < (lp)1/3 < ((p0.5−3ǫ − pǫ−1)p)1/3 =
(p1.5−3ǫ − pǫ)1/3 < p0.5−ǫ. So,n + i < p0.5−ǫ + i ≤ p0.5, if i ≤ p0.5 − p0.5−ǫ.

Based on Theorem 3, we present Algorithm 4. Before stating the step by step algorithm, we discuss the following
few issues. Let us consider a primep and somel. It is clear that we can immediately calculaten = ⌊ 3

√
lp⌋. Now to

get a solution using Theorem 3, one needslp + pǫ > M , whereM = n2(n + i), i = 1, 2, 3 or M = (n + 1)3. Thus
lp must be greater thanM − pǫ. That is why the requirement isM − pǫ < lp < M .

Now we need to check whether there exists anyl for which this is possible. So we calculatel = ⌊M
p ⌋, and so,

lp < M < (l + 1)p. Given thisl, we calculate the maximumǫ in the range0 < ǫ < 1
6 such thatl < p0.5−3ǫ − pǫ−1.

There are various ways to calculate such anǫ. For instance, labelingA =
√

p, X = pǫ, we can solve forX satisfying
the inequalityA3X4−lA2X−1 > 0. (We can also use the next alternative approach: sinceǫ−1 < 0 and0.5−3ǫ > 0,
then the termp0.5−3ǫ will dominatepǫ−1 and so, forp sufficiently large, we can only solve the inequalityl < p0.5−3ǫ,
instead, which will givepǫ = 3

√

p0.5/l.) For that maximumǫ, if lp + pǫ becomes greater thanM , then we get a valid
solution. Thus, we do not need to check all integerl in the range0 < l < p0.5−3ǫ − pǫ−1, but we can only check

the values ofl asl = ⌊n2(n+i)
p ⌋, for i = 1, 2, 3 andl = ⌊ (n+1)3

p ⌋ in the prescribed range. Also it is clear that as we
increasel, the value ofǫ becomes smaller. Thus the expectation of getting a solution decreases asl is increased. Based
on this we present the following algorithm.



Algorithm 4

I n = ⌊p1/3⌋; v = ⌊p1/2⌋;
II l = 1; M1 = n2(n + 1); M2 = n2(n + 2); M3 = n2(n + 3); M4 = n3;
III while(l ≤ v){
IIIa z1 = n + 1; z2 = n + 2; z3 = n + 3; z4 = n;
IIIb for (i = 1, 2, 3, 4){
IIIb(i) l = ⌊Mi

p ⌋;
IIIb(ii) Calculateǫ such thatl = ⌊p0.5−3ǫ − pǫ−1⌋; g = ⌊pǫ⌋;
IIIb(iii) if (Mi − lp) < g

reportv = n, z = zi, x = v2z %p, y = v3z %p and terminate;
IIIc }
IIId n = n + 1;
IV }
V Report no solution of this form.

Now it is important to analyze what proportion of primes are covered by Algorithm 4. We only take the case when
l = 1 which gives a lower bound on the number of primes that are being covered by this algorithm and the algorithm
will stop just after the first iteration. That is, for these primes, we have a constant time algorithm. Forl = 1, ǫ = 1

6 .

Thus if we haveM − p
1
6 < p < M , then there is a valid solution of CSC for the primep. We can takep ≈ n3. The

range betweenn3 and(n + 1)3 is 3n2 + 3n + 1. In this rangep can have the value in the rangeM − p
1
6 < p < M ,

whereM = n2(n + i), i = 1, 2, 3 or M = (n + 1)3 to have a solution by Algorithm 4 in one step. Thus there
are 4 different regions, each of lengthp

1
6 , where we get a one step solution using Algorithm 4. Thus in the range of

3n2 + 3n + 1 integers, we are interested in the4 intervals containing4p
1
6 ≈ 4n

1
2 many integers in total. Now we

can approximate the number of primes in these intervals by
∑4

i=1

(

Mi

log Mi

− Mi−n
1
2

log(Mi−n
1
2 )

)

, where theMi’s are as

described in stepII of Algorithm 4. TakingN ≈ n3 ≈ Mi, we can approximate this by4

(

N
log N − N−n

1
2

log(N−n
1
2 )

)

≈

4

(

N
log N − N−n

1
2

log N

)

≈ 4 n
1
2

log N ≈ 4 n
1
2

log(n+1)3 ≈ 4
3

n
1
2

log n .

Similarly one can look at the interval between(n − 1)3 andn3. Thus one can approximate the total number of

such primes up to(n + 1)3 by
∑n

j=2
4
3

j
1
2

log j ≈
∑N

1
3

j=2
4
3

j
1
2

log j . We summarize the previous analysis in the following
corollary.

Corollary 3 There are approximately
∑N

1
3

j=2
4
3

j
1
2

log j many primesp ≤ N for which we get a valid solution of CSC in
one step by using Algorithm4.

To further motivate our sieving approach, we now attempt to find some necessary conditions on primesp which
fail Reyneri’s sieve, but pass ours. From its construction, a primep will pass Reyneri’s sieve whenx3−p < p

1
2 , where

x = ⌈ 3
√

p⌉. On the other hand, a primep will pass our sieve if there is somel, satisfying the conditions of Theorem 3.
We first discuss the case withl = 1. Given somen, we concentrate on the interval of integers fromn3 to (n + 1)3.

Take the cases when (1)(n + 1)3 − p
1
6 < p < (n + 1)3 or (2)n2(n + 3) − p

1
6 < p < n2(n + 3). In these two cases,

consideringn ≈ p
1
3 , one can see the following solution using Reyneri’s sieve. Takex = ⌈p 1

3 ⌉, z = x3 − p and y = 1.
In these two cases,x3 = (n + 1)3 and hencez = x3 − p < x3 − n2(n + 3) + p

1
6 = 3n + 1 + p

1
6 < p

1
2 . Thus one

can get a solution withx, y, z < p
1
2 . However, note that the solutions we get using Algorithm 4 are different from the

ones using Reyneri’s sieve, sincey cannot be1 in our cases, asy > x, in fact a multiple ofx.



Now consider the other two cases when (3)n2(n+2)−p
1
6 < p < n2(n+2) or (4)n2(n+1)−p

1
6 < p < n2(n+1).

In these two cases,z = x3 − p > x3 − n2(n + 2) = 3n2 + 3n + 1 > p
1
2 . Thus these primes have solution for CSC

with our sieving method, but not by Reyneri’s sieving.
As an experimental result, we tried withn = 100000 and found16 primes as in the cases (1), (2) which pass

Reyneri’s sieve and18 primes as in the cases (3), (4) which do not pass Reyneri’s sieve.
The cases consideringl > 1 are not simple to analyze and need further investigation. However, we have experi-

mented with a few cases and the results show that the primes do not pass the Reyneri’s sieve. As example, we tried
with n = 100000. For2 ≤ l ≤ 9, we got the solutions for30 primes according to Theorem 3 and none of them can be
approached by Reyneri’s sieve.

Now we extend slightly the notion of valid solution to CSC to include all solutions satisfyingx, y, z = O(p
1
2 ) (in

our previous definition the constant understood was1).

Theorem 4 Letp be a prime. Assume that there exist integersa, b with c1p
1
3 ≤ a ≤ c2p

0.5−ǫ (for some fixed constants
c1 ≥ c2; due to the reasonc1p

1
3 < c2p

1
2
−ǫ, 0 < ǫ < 1

6 − logp(
c1

c2
)) and b > lp

a2 such thatlp < a2b < lp + pǫ, for

some1 ≤ l ≤ c3p
1
6 . Then there is a valid solution of CSC withv = a, z = b.

Proof : Takev = a, z = b. It can be checked thatx3 = y2z mod p andx3 6= y2z. Sincelp < a2b < lp + pǫ and
x ≡ a2b mod p, it follows thatx = a2b %p < pǫ < p

1
6 . Similarly, usingalp < a3b < alp + apǫ andy ≡ a3b mod p,

we gather thaty = a3b %p < apǫ < c2p
1
2
−ǫpǫ = c2p

1
2
−ǫ. Furthermore,z = b < lp

a2 + pǫ

a2 < lp

c2
1
p

2
3

+ pǫ

c2
1
p

2
3

<

c3

c2
1

p
1
2 + 1 <

(

c3

c2
1

+ 1
)

p
1
2 . Therefore,x, y, z are allO(p

1
2 ) and they are solutions to CSC.

Clearly the result of Theorem 4 covers a lot more primes than Theorem 3. However, it is not clear how to write an
algorithm to getl very fast when the results of Theorem 3 or Theorem 4 are applied. Algorithm 4 works efficiently (in
fact in constant time) when one gets a solution for low values ofl (bounded by a constant), however asl increases, the
complexity of the algorithm increases.

5 Conclusion

In this paper we identify some subsets of the set of primes where the Cubic Sieve Congruence problem can be solved
very fast. The solutions to this problem help in solving the Discrete Log Problem (DLP) by index calculus method.
Thus we could identify some subclasses of primes which should not be used in the design of cryptosystems where the
hardness of DLP provides the security. Apart from a cryptographic interest, this problem is motivating by itself from a
number theoretic point of view. We could only provide partial solutions to this problem. Solving it completely seems
to be an extremely challenging task. Thus, getting some more partial solutions to this problem presents an important
research direction.
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